
Regular two-point boundary value problems for
the Schrödinger operator on a path

E. Bendito, A. Carmona, A.M. Encinas and J.M. Gesto 1,2
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Abstract

In this work we study the different type of regular boundary value problems on a
path associated with the Schrödinger operator. In particular, we obtain the Green
function for each problem and we emphasize the case of Sturm-Liouville boundary
conditions. In any case, the Green function is given in terms of second kind Cheby-
shev polynomials since they verify a recurrence law similar to the one verified by
the Schödinger operator on a path.
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1 Introduction

In this work, we analyze the linear boundary value problem in the context
of the second order difference equation with constant coefficients associated
with the Schrödinger operator on a finite path. Our study runs in parallel to
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the known for boundary value problems associated with ordinary differential
equations. In particular we concentrate on determining explicit expressions
for the Green function associated with regular boundary value problems on a
path.

We show that, like its continuous counterpart, to determine these func-
tions, it suffices to know previously a basis of solutions of the correspond-
ing homogenous equation. As the difference equation considered here is the
Schrödinger equation in a path, it is possible to obtain explicitly one such
basis in terms of second kind Chebyshev polynomials. As a immediate conse-
quence of this property, we obtain that the Green function of any boundary
value problem can be expressed easily in terms of Chebyshev polynomials.

The second kind Chebyshev polynomials are defined as the sequence veri-
fying U0(x) = 1, U1(x) = 2x and the recurrence law

Un+2(x) = 2 xUn+1(x) − Un(x), for each n ∈ Z.(1)

It is easy to prove that: U−n = −Un−2 for all n ∈ Z which, in particular,
implies that U−1 = 0, see [5].

2 The Schrödinger equation on a path

Our propose in this section is to formulate the difference equations related
with the Schrödinger operator on a connected subset of the finite path of
n + 2 vertices, Pn. Moreover, we can suppose without loss of generality that
the set of vertices of Pn is {0, . . . , n + 1} ⊂ N. Along the paper F will
denote the vertex subset F = {1, . . . , n}. Therefore, the boundary of F is
δ(F ) = {0, n + 1} and the closure of F is F̄ = {0, . . . , n + 1}, the vertex set
of Pn.

For any s ∈ F̄ , εs will stand for the Dirac delta on s. Moreover, if Q ⊂ F̄ ,
we will denote by C(Q) the vector space of functions u: F̄ −→ R that vanish
on F̄ \ Q. For each q ∈ R, the linear operator Lq: C(F̄ ) −→ C(F ) defined for
each u ∈ C(F̄ ) as

Lq(u)(k) = 2qu(k) − u(k + 1) − u(k − 1), k ∈ F,(2)

will be called Schrödinger operator on F̄ . Moreover the value 2(q − 1) is
usually called the potential or ground state associated with Lq. Observe that
the Schrödinger operator with null ground state is nothing else that the so-
called combinatorial Laplacian on F .

For each f ∈ C(F ), we will call Schrödinger equation with data f the iden-
tity Lq(u) = f on F . In particular Lq(u) = 0 on F , will be called homogeneous
Schrödinger equation.
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If u, v ∈ C(F̄ ) the wronskian of u and v, w[u, v] ∈ C(F̄ ) is defined as,

w[u, v](k) = u(k)v(k + 1) − u(k + 1)v(k), k = 0, . . . , n(3)

and w[u, v](n+1) = w[u, v](n), see [4,6]. Note that in some works the function
w[u, v] is called the casoratian of u and v, see for instance [1].

We will call Green function of the Schrödinger equation the function
gp ∈ C(F̄ × F̄ ) such that for any s ∈ F̄ , gq(·, s) is the unique solution
of the homogeneous Schrödinger equation verifying that gq(s, s) = 0 and
gq(s+1, s) = −1 when s = 0, . . . , n and gq(n+1, n+1) = 0 and gq(n, n+1) = 1.

The following results are the reformulation, for the Schrödinger equation
on a path, of some well-known results in the context of difference equations
and they will be useful throughout the paper, [1].

Proposition 2.1 Let {Uk}∞k=−∞ be the sequence of second kind Chebyshev
polynomials and consider the functions u, v ∈ C(F̄ ) defined as u(k) = Uk−1(q)
and v(k) = Uk−2(q), k ∈ F̄ . Then, w[u, v] = 1, the Green function of the
Schrödinger equation is given by

gq(k, s) = −Uk−s−1(q), k, s ∈ F̄

and for any f ∈ C(F ) and x0, x1 ∈ R the unique solution of the Schrödinger
equation with data f verifying that x(0) = x0 and x(1) = x1.

x(k) = x1Uk−1(q) − x0Uk−2(q) −
k∑

s=1

Uk−s−1(q)f(s), k ∈ F̄ .

3 Two-point boundary value problems on a path

Our aim in this section is to analyze the different boundary value problems on
F associated with the Schrödinger operator. As δ(F ) has exactly two points,
these problems are generally known as two-point boundary value problems
on F . Our analysis runs in a parallel way to the two-point boundary value
problems for ordinary differential equations and many techniques and results
are the same in the discrete setting. Therefore, we will omit the proofs that
follow the same guidelines that its continuous counterpart and will remit to
the reader to the fundamental reference [3, Chapters 7,11].

Given a, b, c, d ∈ R non simultaneously null, we will call (linear) boundary
condition on F with coefficients a, b, c and d the linear map U : C(F̄ ) −→ R

determined by the expression

U(u) = au(0) + bu(1) + cu(n) + du(n + 1), for any u ∈ C(F̄ ).(4)
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Let U1,U2: C(F̄ ) −→ R be boundary conditions on F with coefficients
a11, a12, b11, b12 and a21, a22, b21, b22, respectively. Then, for any u ∈ C(F̄ ) it is
verified that⎡

⎣U1(u)

U2(u)

⎤
⎦ =

⎡
⎣ a11 a12

a21 a22

⎤
⎦

⎡
⎣u(0)

u(1)

⎤
⎦ +

⎡
⎣ b11 b12

b21 b22

⎤
⎦

⎡
⎣ u(n)

u(n + 1)

⎤
⎦ .(5)

With the above notations U1 and U2 are called boundary conditions determined
by the matrices A = (aij) and B = (bij).

Lemma 3.1 Let U1 and U2 be the boundary conditions determined by A,B ∈
M2(R). Then, U1 and U2 are linearly independent iff the map UUUUUUUUUUUUUU : C(F̄ ) −→ R

2

whose components are U1 and U2 is surjective or equivalently, iff rg[A,B] = 2.

Fixed (U1,U2) a pair of linearly independent boundary conditions, a bound-
ary value problem on F consists in finding u ∈ C(F̄ ) such that

Lq(u) = f, on F, U1(u) = g1 and U2(u) = g2,(6)

for any f ∈ C(F ) and g1, g2 ∈ R. In particular, the boundary value problem is
called semihomogeneous when g1 = g2 = 0, whereas it is called homogeneous
when f = 0 and g1 = g2 = 0.

The following result applies Lemma 3.1 to show that we can restrict our
analysis of boundary value problems on F to the case of semihomogeneous
problems.

Lemma 3.2 Given U1,U2 linearly independent boundary conditions and g1, g2 ∈
R, consider up ∈ C(F̄ ) such that U1(up) = g1 and U2(up) = g2. Then for any
f ∈ C(F̄ ), the function u ∈ C(F̄ ) satisfies that Lq(u) = f on F , U1(u) = g1

and U2(u) = g2 iff the function v = u − up satisfies that Lq(v) = f − Lq(up)
on F and U1(v) = U2(v) = 0.

Clearly, the homogeneous problem has the null function as solution. We
will say that the pair (U1,U2) is regular if the corresponding homogenous
boundary value problem has the null function as its unique solution. Next we
characterize the regularity of a pair of boundary conditions.

Proposition 3.3 Let U1 and U2 be the linearly independent boundary condi-
tions determined by the matrices A = (aij) and B = (bij) and consider the
value

W (q, A,B) = (a11b22 − a21b12)Un(q) + (a12b21 − a22b11)Un−2(q)

+ (a11b21 + a12b22 − a21b11 − a22b12)Un−1(q) + det A + det B.
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Then, the pair (U1,U2) is regular iff W (q, A, B) �= 0 and when this condi-
tion is satisfied, for each data f ∈ C(F ) the boundary vale problem Lq(u) = f
on F , U1(u) = U2(u) = 0 has a unique solution.

Proof. If we consider u(k) = Uk−1(q) and v(k) = Uk−2(q), then z ∈ C(F̄ ) is
a solution of the homogeneous value problem iff there exist a, b ∈ R such that
z = au + bv and verifying

⎡
⎣U1(u) U1(v)

U2(u) U2(v)

⎤
⎦

⎡
⎣ a

b

⎤
⎦ =

⎡
⎣ 0

0

⎤
⎦ .

Clearly, the pair (U1,U2) is regular iff U1(u)U2(v) − U1(v)U2(u) �= 0. Keeping
in mind that

⎡
⎣U1(u) U1(v)

U2(u) U2(v)

⎤
⎦ =

⎡
⎣ a11 a12 b11 b12

a21 a22 b21 b22

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1

1 0

Un−1(q) Un−2(q)

Un(q) Un−1(q)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

the application of the Binet-Cauchy formula conclude that

U1(u)U2(v) − U1(v)U2(u) = det A +
(
Un−1(q)

2 − Un(q)Un−2(q)
)
det B

+ (a11b21 − a21b11)Un−1(q) + (a11b22 − a21b12)Un(q)

+ (a12b21 − a22b11)Un−2(q)

+ (a12b22 − a22b12)Un−1(q) = W (q, A, B),

since U2
n−1(q)−Un(q)Un−2(q) = w[u, v](n) = 1. Therefore, the pair (U1,U2) is

regular iff W (q, A, B) �= 0.

On the other hand, given f ∈ C(F ) consider up ∈ C(F̄ ) such that Lq(up) =
f on F . Hence, z = a u + b v + up where a, b ∈ R is a solution of the semiho-
mogeneous boundary value problem iff

⎡
⎣U1(u) U1(v)

U2(u) U2(v)

⎤
⎦

⎡
⎣ a

b

⎤
⎦ = −

⎡
⎣U1(up)

U2(up)

⎤
⎦ .
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When the pair is regular, the determinant of the coefficient matrix of the above
system is non null which implies that the system has a unique solution.

4 The Green function for a regular two-point boundary
value problem on a path

The aim of this section is to tackle the resolution, in a closed form, of the
semihomogeneous boundary value problems. Moreover, since we are consid-
ering problems that involve the Schrödinger operator Lq we can express all
formulae in terms of Chebyshev polynomials.

If we suppose that the pair (U1,U2) is regular, according with Proposition
3.3, for any f ∈ C(F ) the boundary value problem Lq(u) = f on F and
U1(u) = U2(u) = 0 has a unique solution. In these conditions we will call
Green function for the semihomogenoeus boundary value problem Lq(u) = f
on F , U1(u) = U2(u) = 0 the function Gq ∈ C(F̄ × F ) characterized by
verifying for any s ∈ F

Lq(Gq(·, s)) = εs on F, U1(Gq(·, s)) = U2(Gq(·, s)) = 0.(7)

Therefore, applying Proposition 2.1, we obtain that

Gq(k, s) = z(k) + Kq(k, s), for any k ∈ F̄ ,

where z satisfies that Lq(z) = 0 on F , and

Kq(k, s) = −
k∑

r=1

Uk−r−1(q)εs(r) = −

⎧⎪⎨
⎪⎩

0, if 0 ≤ k ≤ s ≤ n,

Uk−s−1(q), if 1 ≤ s ≤ k ≤ n + 1.

Proposition 4.1 Let U1 and U2 be the linearly independent boundary condi-
tions determined by A,B ∈ M2(R) and consider u, v ∈ C(F̄ )defined for any
k ∈ F̄ as

u(k) = a11Uk−1(q) + a12Uk−2(q) − b11Un−k−1(q) − b12Un−k(q),

v(k) = a21Uk−1(q) + a22Uk−2(q) − b21Un−k−1(q) − b22Un−k(q).

If W (q, A, B) �= 0, the Green function for the boundary value problem
Lq(z) = f on F and U1(z) = U2(z) = 0 is given by the identity
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Gq(k, s) =
u(k)

W (q, A, B)

[
a21Us−1(q) + a22Us−2(q)

]

− v(k)

W (q, A, B)

[
b11Un−s−1(q) + b12Un−s(q)

]

− 1

W (q, A, B)

⎧⎨
⎩

u(k)v(s), 0 ≤ k ≤ s ≤ n,

v(k)u(s), 1 ≤ s ≤ k ≤ n + 1.

Proof. If we take u1(k) = Uk−1(q) and v1(k) = Uk−2(q), k ∈ F̄ , then we
know that w[u1, v1] = 1. On the other hand, if we consider the functions
defined as u = U1(u1)v1−U1(v1)u1 and v = U2(u1)v1−U2(v1)u1, then U1(u) =
U2(v) = 0, −U1(v) = U2(u) = U1(u1)U2(v1) − U2(u1)U1(v1) and moreover,
w[u, v] = W (q, A, B).

In addition, U1(u1) = a12+b11Un−1(q)+b12Un(q), U2(u1) = a22+b21Un−1(q)+
b22Un(q), whereas U1(v1) = −a11 + b11Un−2(q) + b12Un−1(q), U2(v1) = −a21 +
b21Un−2(q) + b22Un−1(q). Therefore,

u(k) = (a12 + b11Un−1(q) + b12Un(q))Uk−2(q)

+ (a11 − b11Un−2(q) − b12Un−1(q))Uk−1(q)

= a11Uk−1(q) + a12Un−2(q) + b11(Un−1(q)Uk−2(q) − Un−2(q)Uk−1(q))

+ b12(Un(q)Uk−2(q) − Un−1(q)Uk−1(q)).

Applying Proposition 2.1 we get that

−Uk−s−1(q) = Us−2(q)Uk−1(q) − Us−1(q)Uk−2(q)

and hence u(k) = a11Uk−1(q) + a12Un−2(q) − b11Un−k−1(q) − b12Un−k(q). The
same arguments show that v(k) = a21Uk−1(q) + a22Uk−2(q) − b21Un−k−1(q) −
b22Un−k(q).

On the other hand, as w[u, v] = W (q, A,B) �= 0, then {u, v} are lin-
early independent. Therefore, there exist a, b ∈ C(F ) such that Gq(k, s) =
a(s) u(k) + b(s) v(k) + Kq(k, s) for any k ∈ F̄ and any s ∈ F . Moreover
functions a and b are given by the following equalities

b(s) = −U1(Kq(·, s))
U1(v)

=
−1

W (q, A, B)

[
b11Un−s−1(q) + b12Un−s(q)

]

a(s) = −U2(Kq(·, s))
U2(u)

=
1

W (q, A, B)

[
b21Un−s−1(q) + b22Un−s(q)

]

=
1

W (q, A, B)

[
a21Un−s−1(q) + a22Un−s(q)

]
− v(s)

W (q, A,B)
.

The proof finishes observing that as {u, v} is a basis of the homogeneous
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Scrödinger equation, then −Uk−s−1(q) =
1

w[u, v]

(
v(s)u(k) − v(k)u(s)

)
.

The boundary value problem

Lq(u) = f on F au(0) + bu(1) = cu(n) + du(n + 1) = 0,(8)

where (a2 + b2)(c2 + d2) > 0 is called Sturm-Liouville problem. Observe that

these boundary conditions are determined by A =

⎡
⎣ a b

0 0

⎤
⎦ and B =

⎡
⎣ 0 0

c d

⎤
⎦.

Corollary 4.2 The Sturm-Liouville problem is regular iff

adUn(q) + (ac + bd)Un−1(q) + bcUn−2(q) �= 0

in which case the Green function is given by

Gq(k, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
aUk−1(q) + bUk−2(q)

)(
cUn−s−1(q) + dUn−s(q)

)

adUn(q) + (ac + bd)Un−1(q) + bcUn−2(q)
, 0 ≤ k ≤ s ≤ n,

(
aUs−1(q) + bUs−2(q)

)(
cUn−k−1(q) + dUn−k(q)

)

adUn(q) + (ac + bd)Un−1(q) + bcUn−2(q)
, 1 ≤ s ≤ k ≤ n + 1.
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